Eigenvalue Fluctuations for Lattice Anderson Hamiltonians

نویسندگان

  • Marek Biskup
  • Ryoki Fukushima
  • Wolfgang König
چکیده

We consider the random Schrödinger operator−ε−2∆(d) +ξ (ε)(x), with ∆(d) the discrete Laplacian on Zd and ξ (ε)(x) are bounded and independent random variables, on sets of the form Dε := {x ∈ Zd : xε ∈ D} for D bounded, open and with a smooth boundary, and study the statistics of the Dirichlet eigenvalues in the limit ε ↓ 0. Assuming Eξ (ε)(x) = U(xε) holds for some bounded and continuous function U : D→ R, the k-th eigenvalue converges to the k-th Dirichlet eigenvalue of the homogenized operator−∆+U(x), where ∆ is the continuum Laplacian on D. Moreover, assuming that Var(ξ (ε)(x)) = V (xε) for some positive and continuous V : D→ R, we establish a multivariate central limit theorem for simple eigenvalues centered by their expectation and scaled by ε−d/2. The limiting covariance is expressed as integral of V against the product of squares of two eigenfunctions of −∆+U(x).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Wegner estimate for multi-particle random Hamiltonians

We prove of a Wegner estimate for a large class of multiparticle Anderson Hamiltonians on the lattice. These estimates will allow us to prove Anderson localization for such systems. A detailed proof of localization will be given in a subsequent paper.

متن کامل

Simplicity of Eigenvalues in the Anderson Model

We give a simple, transparent, and intuitive proof that all eigenvalues of the Anderson model in the region of localization are simple. The Anderson tight binding model is given by the random Hamiltonian Hω = −∆ + Vω on 2(Z), where ∆(x, y) = 1 if |x − y| = 1 and zero otherwise, and the random potential Vω = {Vω(x), x ∈ Zd} consists of independent identically distributed random variables whose c...

متن کامل

Localization and Eigenvalue Statistics for the Lattice Anderson model with Discrete Disorder

We prove localization and probabilistic bounds on the minimum level spacing for the Anderson tight-binding model on the lattice in any dimension, with singlesite potential having a discrete distribution taking N values, with N large. These results hold for all energies under an assumption of weak hopping.

متن کامل

Compression algorithm for discrete light-cone quantization.

We adapt the compression algorithm of Weinstein, Auerbach, and Chandra from eigenvectors of spin lattice Hamiltonians to eigenvectors of light-front field-theoretic Hamiltonians. The latter are approximated by the standard discrete light-cone quantization technique, which provides a matrix representation of the Hamiltonian eigenvalue problem. The eigenvectors are represented as singular value d...

متن کامل

Eigenvalue Correlations in Continuum One-dimensional Anderson Models

For a large class of one-dimensional, continuum random Schrödinger operators we prove an N -level Wegner estimate. Such estimates bound the probability that the corresponding finite volume Hamiltonians have N eigenvalues in an energy interval [a, b]. Our bounds, which only employ basic Prüfer variable techniques, are proportional to the N -th power of the product of the size of the interval and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2016